Оксигенация крови норма

Параметры оксигенации крови

Оксигенация крови норма

Качество оксигенации артериальной крови оценивают по трем показателям: напряжению кислорода (РаО2), содержанию кисло­рода (СаО2) и насыщению гемоглобина (SaO2). Все три параметра взаимосвязаны, но при этом по каждому из них судят о разных аспектах оксигенации.

РаО2 — напряжение кислорода в артериальной крови; измеря­ется в единицах давления (традиционно — в мм рт. ст. [torr]), а в последнее время — в килопаскалях [кПа}). РаО2 численно равно давлению, под которым произошло насыщение крови кис­лородом. Его Можно определить и как давление кислорода, тре­бующееся для того, чтобы удержать В артериальной крови растворенный кислород.

Чем выше Ра02, тем больше кислорода содержится в крови и тем выше скорость движения кислорода из капиллярной крови в ткани. В норме (то есть когда здоровый человек дышит атмосферным воздухом) этот показатель состав­ляет 92-98 мм рт. ст.* РаО2 обычно измеряют в лабораторных ус­ловиях в пробе артериальной крови или в мониторном режиме микроэлектродом, введенным в артерию.

СаО2 — количество кислорода в артериальной крови; обычно измеряется в мл О2/100 мл крови. Чаще всего данный показатель получают расчетным путем, реже — лабораторно. Кислород со­держится в крови в двух формах:

• Кислород, физически растворенный в крови. Растворимость кислорода в биологических жидкостях очень низка, а его ко­личество в них прямо пропорционально напряжению. В 100 мл крови на каждый 1 мм рт. ст. напряжения О2 приходится 0,0031 мл растворенного 02.

Нетрудно подсчитать, что в 100 мл артериальной крови в норме содержится всего около 0,3 мл растворенного кислорода. Поэтому существенное ко­личество физически растворенного кислорода появляется в крови лишь в гипербарических условиях или после инфузии перфторкарбоновых соединений.

Видимо, излишне упоми­нать о том, что пульсоксиметр не реагирует на кислород, ра­створенный в крови.

• Основной запас кислорода находится в обратимой связи с гемоглобином. Один грамм полностью насыщенного кисло­родом гемоглобина (Sa02 °° 100 °/о) содержит 1,39 мл кислорода*. Поэтому количество мл кислорода, присоединенного к гемоглобину, в 100 мл крови равняется:

НЬ(г/100 мл) х Sa02 X 1,39/100.

Так, при НЬ = 15 г/100 мл и Sa02 = 98 % гемоглобин артери­альной крови содержит:

(15 х 0,98 х 1,39) ° 20,4 мл 02/1QO мл крови.

Таким образом, в норме в 100 мл артериальной крови при дан­ном количестве гемоглобина содержится (20,4 + ДЗ) = 20,7 мл кислорода.

Кислородная емкость гемоглобина ограничена, поскольку молекула HЬ способна присоединить к себе только 4 мо­лекулы кислорода. После, того как весь гемоглобин пре-вращается в оксигемоглобин, дальнейшее насыщение его кислородом становится невозможным.

Следует отметить, что даже при нормальном РаО2 содержание кис­лорода в крови может быть низким (например, при анемии или отравлении окисью углерода). И наоборот, при сниженном напря­жении кислорода в артериальной крови Са02 может быть нормаль­ным (например, при гемоконцентрации или полицитемии).

Кислородная емкость одного грамма чистого гемоглобина (константа, впервые измеренная фон Гюфнер в лабораторных условиях в 1894 году) составляет 1,39 мл/г. Однако реальное значение этой константы равняется 1,34-1,37 мл/г, что зависит от количества карбокси- и метгемоглобина, всегда присутствующих в крови и небольших количествах. Отсюда — разночтения в литературе относительно ее величины.

SaO2 — степень насыщения гемоглобина артериальной крови кислородом. Пульсоксиметр измеряет именно этот показатель (напомним, что в данном случае он обозначается SpO2), поэтому мы рассмотрим его подробнее.

Степень насыщения гемоглобина кислородом зависит от напряжения кислорода в крови. Отношения между Ра02 и Sa02 Достаточно сложны, регулируются несколькими физиологическими факторами (речь о них пойдет ниже) и графически выражаются S-образной кривой диссоциации оксигемоглобина.

Диссоциация оксигемоглобина — отделение кислорода от оксигемоглобина. Обратный процесс — образование оксигемоглоби­на из гемоглобина и кислорода — называется сатурацией, или оксигенацией гемоглобина. Эти два процесса лежат в основе транспорта кислорода кровью.

Диссоциация гемоглобина. Этим термином, схожим с предыдущим по звучанию, но не по сути, в действительности обозначает­ся разрушение гемоглобина с образованием гема и глобина; од­нако в клинике им нередко ошибочно пользуются, говоря о SaO2.

* Для каждого возрастного диапазона существуют собственные нормативы итого показателя.

Источник: http://symona.ru/shkola-professionala/monitoring-dyhaniya/parametry-oksigenacii-krovi/

Пульсоксиметрия и сатурация кислородом: норма, показатели обследования – Сосуды Мед

Оксигенация крови норма

Пульсоксиметрия это метод измерения показателей: сатурации крови, частоты пульса и амплитуды пульсовой волны.
Термин сатурация кислорода означает насыщение кислородом гемоглобина, или более точно, это процентное соотношение оксигемоглобина ко всему гемоглобину.

Приборы, которые определяют сатурацию крови называются – пульсоксиметры.

Впервые метод пульсоксиметрии начал использоваться  в палатах интенсивной терапии. Со временем метод совершенствовался, качество аппаратуры  улучшалось, и это исследование стало общедоступным.

В настоящее время его используют даже в амбулаторных условиях.

Преимущества пульсоксиметрии:

  • Неинвазивный, безболезненный метод определения сатурации, частоты пульса и амплитуды пульсовой волны;
  • Достаточно точный метод для определения функции дыхания;
  • Можно использовать как для однократного исследования, так и длительного мониторинга;
  • Не требует специальных медицинских знаний, калибровки и особого обслуживания;
  • Метод довольно прост и надежен в использовании.

Метод пульсоксиметрии основан на способности гемоглобина поглощать свет определенной длины, и эта степень поглощения зависит от процентного содержания оксигемоглобина.

То есть пульсоксимерт способен различать оксигемоглобин от восстановленного (деоксигенированного) гемоглобина.

Кроме того пульсоксиметр способен определять  оксигемоглобин именно в артериальной крови (по пульсации светового потока), а не венозной.

Пульсоксиметр также определят по наполнению артериол (во время пульсовой волны)- частоту пульса и амплитуду пульсовой волны.

Датчик прибора оснащен двумя светодиодами (один из них излучает красные световые лучи, а другой инфракрасные) и фотоприемника, в который попадают проходящие через ткани лучи. Инфракрасный свет адсорбирует оксигенированный гемоглобин, а красный свет — деоксигенированный гемоглобин.

Что бы провести исследование на палец одевается датчик. Светодиоды излучают свет, который проходя через ткани и кровеносные капилляры пальца, воспринимается фотодатчиком. Датчик  регистрирует изменение цвета гемоглобина в зависимости от насыщения его кислородом и выдает результат на дисплей монитора.

Пульсоксиметры бывают:

  1. Трансмиссионные – которые работают на просвет через ткани.
  2. Рефракционные — работают на отражение света от ткани. В отличие от трансмиссионных у них ряд преимуществ: можно использовать с накрашенными, накладными ногтями, не обязательно датчики должны быть друг напротив друга.

Обозначают сатурацию, определенную пульсоксиметром такими символами — SpO2.
Если сатурацию определяли лабораторным (инвазивным) путем, так называемую истинную сатурацию, то ее обозначают символами — SaO2.

Норма сатурации (SpO2) – 95-98%.

Что бы правильно понять цифры сатурации можно их сравнить с парциальным давлением кислорода в крови (PaO2).

Так сатурация (SpO2) 95-98% соответствует — 80-100 мм рт. ст. (PaO2).

Сатурация (SpO2) 90% соответствует —  60 мм рт.ст.(PaO2).

Сатурация (SpO2) 75% соответствует —  40 мм рт.ст.(PaO2).

Правила проведения пульсоксиметрии:

  • Нужно правильно закрепить датчик. Фиксация должна быть надежной, но без лишнего давления;
  • Датчики должны находится друг напротив друга, симметрично иначе путь между датчиками будет неравным и одна из длин волн будет «перегруженной». При этом изменение положения датчика приводит к изменению сатурации. Этот касается только трансмиссионных пульсоксиметров;
  • После прикрепления датчика к пациенту нужно немного подождать (примерно 5-20 сек), после чего прибор покажет результат;
  • Ноготь должен быть чистым (без лака). Различные загрязнения ногтя снижают процент сатурации (это не относится к рефракционным пульсоксиметрам);
  • Любые движения, дрожь искажают результат сатурации;
  • Яркий внешний свет также влияет на показания прибора;
  • Следует знать, что при отравлении угарным газом сатурация будет в пределах нормы (карбоксигемоглобин ошибочно воспринимается прибором как оксигемоглобин);
  • При анемии сатурация будет наоборот повышена (компенсаторно), потому, что она не зависит от количества гемоглобина, а от процентного соотношения оксигемоглобина ко всему гемоглобину;
  • При нарушении микроциркуляции (спазме сосудов), когда не определяется пульсовая волна на приборе — пульсоксиметр будет показывать не достоверные результаты. Если пульсоксиметр качественный он укажет, что невозможно определить результат, а если не качественный может показать сатурацию -100%;
  • Если во время определения — сатурация быстро изменяется (например с 95% на 80% и наоборот), тогда надо думать об ошибке прибора;
  • При понижении сатурации ниже 70% возрастает погрешность метода;
  • При нарушениях ритма сердца, нарушается восприятия пульсоксиметром пульсового сигнала;
  • Желтуха, темная кожа, пол, возраст на показатели пульсоксиметра практически не влияют.

Основная причина понижения сатурации это развитие артериальной гипоксемии.

Артериальная гипоксемия может иметь место:

  • При уменьшении кислорода во вдыхаемом газе. Это возможно при избыточной концентрации закиси азота во время анестезии. Также при дыхании разреженным воздухом в высокогорье;
  • При состояниях, которые ведут к гиповентиляции (апное, остановка дыхания, при интубации трахеи с применением миорелаксантов);
  • При шунтировании крови в легких (респираторный- дистресс синдром РДС);
  • При гиповентиляции отдельных легочных зон (обструкция дыхательных путей, пневмонии, макро и микроателектазы легких);
  • При нарушении диффузии кислорода через альвеолы в кровь (обширная пневмония, коллапс легкого, множественные ателектазы, тромбоэмболия легочных сосудов, отек или фиброз альвеолокапиллярной мембраны);
  • При врожденных пороках сердца, когда идет сброс крови справа на лево (тетрада Фалло), или общее смешивание крови (общий артериальный ствол, единый желудочек сердца).

Для практического врача нужно знать:

  • При сатурации менее 90% показана оксигенотерапия;
  • Цианоз возникает при SрО2 менее 85%, у новорожденных  уже при SрО2- 90%;
  • При анемии даже при сатурации 70% может не быть цианоза (анемия скрывает цианоз);
  • Сатурация 80% бывает при врожденных пороках сердца, которые сопровождаются цианозом;
  • Разница сатурации между руками и ногами может указывать на обструкцию дуги аорты (в перешейке аорты);
  • При критических состояниях датчик установленный на ухо является более предпочтительным, чем датчик установленный на пальце;
  • Для проверки работы пульсоксиметра сначала определяют сатурацию в сидячем положении (рука находится на столе). Затем встают, поднимают руку и снова определяют сатурацию. Сатурация должна быть одинаковой. Если она не совпадает это значит пульсоксиметр не пригоден для мониторинга больных;
  • Если пульсоксиметр показывает 100% при дыхании пациента атмосферным воздухом, то это признак, что он не высокого качества;
  • Пульсоксиметрия характеризует только оксигенацию и не является показателем вентиляции;
  • С помощью пульсоксиметра можно определить снижение перфузии тканей (по уменьшению амплитуды пульсовой волны на фотоплетизмограмме ). При этом если нет легочной патологии — сатурация будет в норме.

В заключение хочется отметить, что пульсоксиметр не дает информации о содержании кислорода в крови, количестве растворенного в крови кислорода, частоте дыхания, дыхательном объеме, артериальном давлении, сердечном выбросе. Поэтому нужно использовать дополнительно другие методы исследования для определения полной клинической картины.

Михаил Любко

Источник:

Пульсоксиметрия

В ряде случаев для постановки диагноза синдрома обструктивного апноэ сна  достаточно проведения  пульсоксиметрии с помощью наручного компьютерного пульсоксиметра (см.рисунок), который в течение ночи записывает такие параметры как насыщение крови кислородом и частота сердечных сокращений.

                   Пульсоксиметр PulseOx 7500 (SPOmedical, Израиль)

Пульсоксиметрия – неинвазивный метод измерения процентного содержания оксигемоглобина в артериальной крови (сатурации). В основе метода пульсоксиметрии лежит измерение поглощения света определенной длины волны гемоглобином крови. Степень поглощения зависит от процентного содержания оксигемоглобина.

На этом базируется способность пульсоксиметра устанавливать степень оксигенации крови. Пульсоксиметр также фиксирует изменения «толщины» крови в связи с пульсацией артериал: каждая пульсовая волна увеличивает количество крови в артериях и артериолах.

Таким образом пульсоксиметр измеряет частоту пульса и амплитуду пульсовой волны.

Компьютерная пульсоксиметрия – метод длительного мониторирования процентного содержания оксигемоглобина в артериальной крови (сатурации) и пульса.

Для мониторинга сатурации применяются компьютерные оксиметры, обеспечивающие регистрацию сигнала с дискретностью раз в несколько секунд. За ночь оксиметр регистрирует сатурацию около 15000 раз и сохраняет полученные данные в памяти прибора.

Дальнейшая компьютерная обработка данных позволяет с высокой точностью оценивать параметры сатурации в период ночного сна.

Показания к проведению компьютерной пульсоксиметрии

Проведение компьютерной пульсоксиметрии во сне показано у пациентов с заболеваниями, при которых распространенность нарушений дыхания во сне может достигать 30-50% [2,5,7,14,15]:

  • Ожирение 2 степени и выше (индекс массы тела >35)
  • Артериальная гипертония 2 степени и выше (особенно ночная и утренняя)
  • ХОБЛ тяжелого течения (ОФВ1 2 раз за ночь)
  • Затрудненное дыхание, одышка или приступы удушья в ночное время
  • Частые пробуждения и неосвежающий сон
  • Выраженная дневная сонливость
  • Депрессия, апатия, раздражительность, сниженный фон настроения
  • Гастроэзофагальный рефлюкс (отрыжка) в ночное время

Компьютерная пульсоксиметрия может применяться для динамического контроля эффективности методов респираторной поддержки:

  • Длительная кислородотерапия с применением кислородных концентраторов
  • Неинвазивная вспомогательная вентиляция легких постоянным положительным давлением (CPAP-терапия) и двухуровневым положительным давлением (BiLevel-терапия)

Клинические примеры мониторинговой пульсоксиметрии

Ниже представлены результаты мониторинговой пульсоксиметрии во время сна у пациентов Клинического санатория «Барвиха».

Норма

Рис. 2. Здоровый доброволец С., 28 лет. В верхней части рисунка: статистические данные по исследованию. В средней: 8-ми часовая развертка кривых сатурации и пульса. В нижней: 5-ти минутная развертка кривых сатурации и пульса.

Показатели насыщения крови кислородом в норме. Средняя сатурация SPO2 = 98%. Минимальная сатурация – 90%. Кривая сатурации представляет собой практически прямую линию.

Синдром обструктивного апноэ сна, тяжелая форма

Рис. 3. Пациент З., 49 лет. Тяжелая форма синдрома обструктивного апноэ сна, ожирение 3 ст. В верхней части рисунка: статистические данные по исследованию. В средней: 8-ми часовая развертка кривых сатурации и пульса. В нижней: 15-ти минутная развертка кривых сатурации и пульса.

Средняя сатурация снижена (87%) за счет высокой частоты тяжелых циклических десатураций (минимальная сатурация 52%). Индекс десатураций — 46 в час. Вне периодов десатураций насыщение крови кислородом находится в пределах нормальных значений.

На отсутствие постоянной хронической гипоксемии также указывает такой показатель, как «Максимальный постоянный период снижения SpO2 ниже 89%». Он составляет всего 1 минуту. Т.е. даже при резких падениях сатурации максимум через минуту насыщение крови кислородом возвращается к уровню выше 89%.

Отмечаются выраженные колебания пульса (от 53 до 70 в мин), связанные с периодами десатураций.

Рис. 4. Тот же пациент, что на рис. 3.

На рисунке отмечен эпизод падения сатурации продолжительностью 75 секунд с 86% до 53%. Следует отметить, что при сатурации ниже 70% человек начинает синеть. Столь катастрофические проблемы с сатурацией обусловлены острой асфиксией из-за спадения дыхательных путей на уровне глотки во время сна и развития эпизода обструктивного апноэ.

В итоге в организме развивается стрессовая реакция с активацией симпатической нервной системы и выбросом катехоламинов. Резко повышается артериальное давление и пульс ( на рисунке с 55 до 75 за 20 секунд). Мозг частично пробуждается и дает команду на открытие дыхательных путей.

Но после восстановления дыхания и насыщения крови кислородом мозг засыпает, дыхательные пути снова спадаются и цикл апноэ повторяется.

Данная картина высоко специфична для синдрома обструктивного апноэ сна и отражает падение насыщения крови кислородом на фоне циклических апноэ и гипопноэ.

Циклические десатурации также могут отмечаться при синдроме центрального апноэ сна (дыхании Чейна-Стокса), однако их форма несколько отличается от десатураций при обструктивных апноэ.

При обструктивных апноэ отмечается пологий спад и быстрый подъем сатурации в вентиляционную фазу, так как происходит резкое возобновление дыхания при открытии дыхательных путей.

При центральных апноэ нисходящее и восходящее колено эпизода десатурации практически равны по длительности, так как развитие апноэ обусловлено нарушением работы дыхательного центра, который достаточно плавно тормозится и также плавно восстанавливает свою активность. Таким образом, вентиляция возобновляется постепенно, соответственно, восстановление сатурации также происходит достаточно плавно.

При 12-ти летнем наблюдении за нелеченными пациентами с тяжелой формой СОАС риск развития нефатальных сердечно-сосудистых осложнений составил 35%, фатальных 15%, что соответственно в 5 и 3 раза выше, чем у сравнимой группы пациентов без СОАС [13].

Источник: https://elit30.ru/simptomy/pulsoksimetriya-i-saturatsiya-kislorodom-norma-pokazateli-obsledovaniya.html

Терапевт Шубин
Добавить комментарий