Где находится синусовый узел

➺Проводящая система сердца

Где находится синусовый узел

Сердце обладает автоматизмом — способностью самостоятельно сокращаться через определенные промежутки времени.

Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца.

Рассмотрим компоненты проводящей системы сердца:

  • синусно-предсердный узел,
  • предсердно-желудочковый узел,
  • пучок Гиса с его левой и правой ножкой,
  • волокна Пуркинье.

Теперь подробнее.

1) синусно-предсердный узел  — источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу).

Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены.

Слово “синус” в переводе означает “пазуха”, “полость”.

Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте — синусно-предсердном узле.

Нормальная частота ритма в покое — от 60 до 80 ударов в минуту.

Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 — тахикардия. У тренированных людей обычно наблюдается брадикардия.

Интересно знать, что в норме импульсы генерируются не с идеальной точностью.

Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на ≥ 10% превышает среднее значение).

При дыхательной аритмии ЧСС на вдохе увеличивается, а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС.

Дыхательная синусовая аритмия бывает преимущественно у здоровых людей, особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками.

В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков — 3-5 м/с).

Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

Почему я назвал AV-узел “фильтром“? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто.

С помощью различных препаратов можно регулировать ЧСС, повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы).

Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС < 60).

На скорой это одна из самых частых аритмий, ею страдает > 6% больных старше 60 лет.

Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией, при ней без экстренной медицинской помощи больной умирает за 6 минут.

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку.

Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви — переднюю и заднюю.

Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, “полная блокада левой ножки пучка Гиса”.

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции.

Синусовый узел является водителем ритма первого порядка и генерирует импульсы с частотой 60-80 в минуту.

Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел — водитель ритма 2-го порядка, генерирующий импульсы 40-60 раз в минуту.

Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace — скорость, темп).

В норме активен только водитель ритма первого порядка, остальные “спят”. Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный.

Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки — в своем с частотой 20-40 в минуту.

Источник: https://emhelp.jimdofree.com/%D1%88%D0%BF%D0%B0%D1%80%D0%B3%D0%B0%D0%BB%D0%BA%D0%B8-%D0%BF%D0%BE-%D1%8D%D0%BA%D0%B3/%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D1%8F%D1%89%D0%B0%D1%8F-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0-%D1%81%D0%B5%D1%80%D0%B4%D1%86%D0%B0/

Как устроена проводящая система сердца

Где находится синусовый узел

Для того чтобы синхронизировать сокращения отделов сердца, в них проходят проводящие пути. Они представлены особым видом клеток-пейсмекеров, отличающихся от остальных кардиомиоцитов.

Их функция заключается в образовании и передаче нервных импульсов по миокарду для осуществления сокращения сердца.

Если в какой-нибудь части происходит сбой, то у человека возникают различные нарушения ритма.

Строение проводящей системы сердца

Структуры, входящие в проводящую систему сердца (ПСС), имеют высокую специализацию и сложный механизм взаимодействия. Научные дискуссии по поводу работы путей прохождения импульсов до сих пор не окончены.

Элементы и отделы

Компонентами ПСС являются два узла – синусово-предсердный, синоатриальный (САУ) и предсердно-желудочковый, или атриовентрикулярный (АВУ). Первый узел, вместе с путями, проходящими по предсердиям и к АВУ, объединен в синоатриальный отдел, а АВУ и ножки пучка Гиса с мелкими волокнами Пуркинье включены во вторую, атриовентрикулярную часть.

Синусовый узел

В здоровом сердце он считается единственным генератором ритма. Его месторасположение находится в правом предсердии, вблизи полой вены. Между САУ и внутренним слоем сердца есть тонкая оболочка из мышечных волокон. По форме узел похож на полумесяц. От него отходят волокна к обоим предсердиям и полым венам. Соединение САУ и АВУ осуществляется при помощи межузловых путей:

  • передний – один пучок к левому предсердию, частично волокна по перегородке переходят к АВУ;
  • средний – в основном пролегает по перегородке;
  • задний – проходит полностью между предсердиями.

Рекомендуем прочитать статью о синоаурикулярной блокаде. Из нее вы узнаете о патологии, причинах ее развития, симптомах, диагностике и лечении.

А здесь подробнее о миграции водителя ритма.

Атриовентрикулярный узел

Находится в правом предсердии внизу перегородки. Имеет вид диска или овала. В нем гораздо меньше соединительных клеток, чем в САУ, от остальной ткани предсердий отделен жировыми клетками. От него отходят пути Гиса в трех ветвях – передней, задней и атриовентрикулярной.

Ножки пучка Гиса

На уровне аортального синуса пучок Гиса располагается в позиции всадника над перегородкой между желудочками. В дальнейшем происходит его деление на правую и левую ножку.

Правая ножка более крупная, идет по перегородочной части миокарда, разветвляясь в мышце правого желудочка. У нее есть три ветки:

  • верхняя занимает треть расстояния до сосочковых мышц;
  • средняя идет до края перегородки;
  • нижняя направляется к основанию сосочковой мышцы.

Левая ножка Гиса анатомически выглядит как продолжение основной части пучка, она делится на:

  • переднюю – проходит по передней и боковой области левого желудочка;
  • заднюю – направляется к верхушке, задненижней части.

В дальнейшем ножки Гиса ветвятся по мышечному слою желудочков, образуя сеть волокон Пуркинье. Эти конечные части проводящей системы напрямую взаимодействуют с клетками миокарда.

Функции проводящей системы

Кардиомиоциты обладают способностью к образованию сигнала, его передаче по миокарду и сокращению стенок в ответ на возбуждение. Все основные свойства возможны только благодаря работе проводящей системы. Генерация электрического сигнала происходит в атипичных Р-клетках, которые названы от английского слова pacemaker, что означает водитель.

Среди них есть рабочие и резервные, включающиеся в деятельность сердца при разрушении истинных пейсмекеров.

Образованный в синусовом узле, биоимпульс проводится по миокарду с разной скоростью. Предсердия получают сигналы 1 м/с, передают их в АВУ, который задерживает их до 0,2 м/с. Это нужно для того, чтобы вначале могли сократиться предсердия, передать кровь в желудочки. Последующая скорость распространения по клеткам Гиса и Пуркинье доходит до 5 м/с.

Это придает миокарду желудочков синхронность при сокращении, потому что все клетки реагируют практически одновременно.

Целью такого слаженного ответа является мощность сердечной мышцы и эффективный выброс крови в артериальную сеть.

Если бы не было проводящих путей, то возбуждение мышечных клеток было бы последовательным и замедленным, что привело бы к потере половины давления потока крови, исходящего из желудочков.

Поэтому к основным функциям ПСС относятся:

  • самостоятельное изменение потенциала мембраны (автоматизм);
  • образование импульса с ритмичными промежутками;
  • последовательное возбуждение частей сердца;
  • одновременное сокращение желудочков для повышения эффективности систолического выброса крови.

Смотрите на видео о строении сердца и его проводящей системы:

Работа сердца и проводящей системы

Принципом, по которому работает ППС, является иерархия. Это означает, что главным считается самый вышележащий источник импульсов, он обладает возможностью вырабатывать наиболее частые сигналы и «заставлять» усваивать их ритм. Поэтому все остальные части, несмотря на то, что могут сами генерировать волны возбуждения, подчиняются главному пейсмекеру.

В здоровом сердце основной водитель ритма – САУ. Его считают узлом первого порядка. Частота образуемых импульсов у синусового узла соответствует 60 — 80 за одну минуту.

По мере удаления от САУ способность к автоматизму слабеет. Поэтому, если пострадает синусовый узел, то его функцию возьмет на себя АВУ. При этом ритм сердца замедляется до 50 ударов. Если роль водителя ритма будет у ножек Гиса, то больше 40 импульсов в минуту они не смогут образовать. Спонтанное возбуждение волокон Пуркинье генерирует очень редкие удары – до 20 за минуту.

Поддержание скорости движения сигналов возможно благодаря контактам между клетками. Они называются нексусами, за счет низкого сопротивления электрическому току задают правильное направление и быстрое проведение сердечных импульсов.

Рекомендуем прочитать статью о предсердной экстрасистолии. Из нее вы узнаете о причинах патологии, ее симптомах у детей и взрослых, методах диагностики и лечения, а также о мерах профилактики.

А здесь подробнее об аритмии и брадикардии. 

Все главные функции миокарда (автоматизм, возбудимость, проводимость и сократимость) осуществляются благодаря работе проводящей системы. Процесс возбуждения начинается в синусовом узле. Он работает с частотой 60 — 80 импульсов за минуту.

Сигналы по нисходящим волокнам достигают предсердно-желудочкового узла, немного задерживаются, чтобы сократились предсердия, и по пучку Гиса достигают желудочков. Мышечные волокна в этой зоне сокращаются синхронно, так как скорость импульсов максимальная. Такое взаимодействие обеспечивает эффективный сердечный выброс и ритмичную работу отделов сердца.

Источник: http://CardioBook.ru/provodyashhaya-sistema-serdca/

Проводящая система — E-Cardio

Где находится синусовый узел

Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой.

В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла.

Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку и сеть волокон Пуркинье, и достигают сократительных клеток миокарда желудочков.

Проводниковая система

1. Синусовый узел (синоатриальный, S—A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а — пучок к левому предсердию (пучок Bachmann)

2б — нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А—V) узел Ашоффа—Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

Межузловые пути

Электрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви — первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь, известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь, названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

Пучок гиса

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом.

Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса.

Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см.

Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

Правая и левая ножки пучка гиса

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки — правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки.

Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых.

В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.

), левая ножка еще с самого начала делится на две ветви — переднюю и заднюю. Передняя ветвь — относительно более длинная и тонкая — достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка.

Задняя ветвь — относительно короткая и толстая — достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр.

фасцикулами, — правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка.

Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки.

Два из множества разветвлений образуют более обособленные пучки — один, расположенный спереди, — в направлении передней, а другой сзади — в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток — клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.

Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии.

Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).

Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

Источник: https://e-cardio.ru/anatomiya-provodyashhej-sistemy-serdca/

Синусно-предсердный узел: что это такое и где находится?

Где находится синусовый узел

Чтобы быть здоровым, нужно знать, как устроено собственное тело. Любое нарушение в работе систем организма, может привести к серьезным последствиям. Давайте разберем, как устроено сердце, где находится синусно-предсердный узел.

Механизм существования человека

Человек как работающий многофункциональный механизм. Он может выполнять много действий: есть, пить, ходить, сидеть, смотреть в окно – этот перечень может быть нескончаемым. За все вышеперечисленное отвечают системы жизнедеятельности организма.

Каждый орган выполняет определенную функцию, заменить его другим невозможно.

Все очень просто: наши глаза отвечают за зрительное восприятие, уши – за слуховое, желудок несет ответственность за пищеварение, легкие – за дыхание, головной мозг – за умственные и прочие операции, селезенка и печенка – за процессы пищеварения и транспорт пищи в организме и т. д.

Все органы важны и взаимосвязаны между собой. Даже без одного наш организм не сможет полноценно работать, а мы, соответственно, будем подвержены заболеваниям.

В современном мире можно легко определить, здоров человек или нет. Про болезнь у человека говорит цвет кожи, состояние зубов, усталость, истощение и т. д.

Поэтому каждый из нас должен заботиться о своем здоровье, а именно о правильной работе внутренних органов.

Сердце – орган кровообращения, который транспортирует кровь по сосудам. Оно способно перекачивать 4-5 литров крови в минуту. Но это не окончательная цифра, она может достигать отметки 30 литров.

Исходя из данных исследований, вес сердца примерно 300 г, ширина – 7-10 см, длина – 12-13 см. Есть мнение, что если сжать кулак, то его окружность будет отвечать размерам сердца.

Но все это относительно и зависит от индивидуальных особенностей организма, ритма жизни.

Сердце – это орган, который участвует в транспортировке питательных веществ кровью через сосуды к мозгу и другим органам. И пока оно работает без отклонений, наш организм не испытывает трудностей в жизнедеятельности.

Но не стоит забывать, что этот орган не вечен и может выйти из строя и потребует срочного восстановления. Проблемы с сердцем могут появиться из-за наследственности, влияния внутренней среды, злоупотребления алкоголем и курением, частых стрессов и недосыпания, а также других негативных факторов. Лучшей профилактикой будут занятия спортом и правильный рацион питания.

Структура сердца

Сердце состоит из четырех камер, разделенных специальными перегородками. Две камеры – это левое и правое предсердие. В правом предсердии расположен синусно-предсердный узел. Другие две камеры – левый и правый желудочки. Правая сторона сердца, куда входит правые предсердие и желудочек, отвечает за венозную кровь, а левая, где расположены левые предсердие и желудочек, за артериальную.

Между предсердиями и желудочками находится клапан, который не пускает кровь в обратную сторону. Также в сердце имеются полые вены, которые входят в правое предсердие, и легочные вены – в левое предсердие.

Где находится

Сегодня мы рассмотрим более детально одну из его составляющих – синусно-предсердный узел. Это только название страшное.

Его еще называют синоатриальный, синусный узел, узел Киса – Флека. Синусно-предсердный узел расположен в правом предсердии, куда впадает верхняя полая вена. Это объясняет, зачем мы ранее рассматривали структуру органа.

Синусно-предсердный узел сердца – это узел, представляющий собой скопление мышечной ткани. Длина такого узла, как правило, от 1 до 20 мм, а ширина – от 3 до 5 мм. В строение синусно-предсердного узла входят клетки двух видов: те, которые возбуждают электрические импульсы для работы сердца, и те, что отвечают за проведение возникших стимулов от узла к предсердиям.

Внешняя оболочка этих клеток (мембрана) характеризуется большой проницаемостью для ионов натрия. Наличие ионов натрия приводит к возникновению определенных действий в клетках, которые находятся рядом, это так называемая волна возбуждения. Толчки возбуждения проходят по сердечным мышцам и провоцируют их сокращение.

Основная функция синусного узла – возбуждение электрических импульсов. Импульсы, возникшие в узле, приводят к возбуждению и сокращению сердца. При нормальной работе это составляет 60-80 имп/мин.

Синусно-предсердный узел по многим показателям часто называют водителем ритма сердца, так как в нем берет начало волна возбуждения, которая, в свою очередь, провоцирует следующую.

Сокращение распространяется по стенкам предсердия со скоростью 1 м/с. Данная информация дает возможность понять, как работает узел и где его местоположение.

Проводящая система сердца

Синусно-предсердный узел (на латыни nódus sinuatriális) имеет большое значение в жизнедеятельности организма. Так ли важен он на самом деле, как мы о нем говорим? Ответ прост, ведь сердце является насосом для нашего организма, который качает кровь по венам и артериям. Этот насос работает только благодаря сокращениям в органе. Это возможно благодаря проводящей системе сердца.

Неотъемлемыми и очень важными составляющими этой системы выступают два компонента: узел Киса – Флека и узел Ашоффа – Тавара.

Узел Киса – Флека и узел Ашоффа – Тавара

Их особенностью является то, что их клетки способны передавать нервные импульсы, которые провоцируют сокращение предсердий и желудочков. Все потому, что их клетки связаны между собой концами и боковыми поверхностями. В связи с этим они чувствительны. Сердечные стимулы начинаются в синусном узле, затем расходятся по предсердиям и в конце доходят к предсердно-желудочковому узлу.

История происхождения терминов

История происхождения терминов начинается с XIX столетия. Начало XX века знаменито своими морфологическими исследованиями сердца, которые вошли в науку и историю. В 1806 году С. Тавара открыл атриовентрикулярный узел.

Его назвали в честь ученого. Занимались изучением этого вопроса А. Кис и М. Флек, они точно описали синусный узел. Вскоре они доказали, что этот узел является основным, можно сказать, незаменимым генератором сердечных импульсов.

Немаловажным было и то, что, если синоатриальный узел лишится своих функций, генератором ритма автоматически становится антриовентрикулярный узел. Таким образом, эти узлы взаимодополняют друг друга в случае нарушения функций одного из них.

Проблемы и патологии

Все органы организма могут подвергаться развитию различных патологий. От этого никто не застрахован. Сердце – один из органов, который страдает чаще всего.

И конечно же, есть проблемы и в работе узлов проводящей системы сердца.

Стоит с большой осторожностью относиться к данным расстройствам, так как они могут нарушить работу проводящей системы сердца, что приведет к негативным последствиям. Данные проблемы приводят к:

  1. Частичной блокаде. В этом случае импульс проводится медленно.
  2. Полной блокаде, когда импульс вообще отсутствует.

Такие блокады могут возникнуть на разных участках цельной системы. К примеру, это может быть синусовая блокада – участок нарушений и отклонений именно в этом узле, предсердно-желудочковая блокада – непосредственно на участке этого узла и т. д. То есть место возникновения блокады считается названием.

Мы уже знаем, что если синусно-предсердный узел работает плохо, то это влечет за собою дисфункцию остальных составляющих сердца. Поэтому стоит все органы держать в порядке и оберегать их по мере возможности.

Даже если человек полностью ведет правильный образ жизни, соблюдает все рекомендации, регулирует время работы и отдыха, избегает стрессовых ситуаций, он не сможет избежать врожденных блокад. Они, как правило, не отражаются на жизни человека и не несут никакого дискомфорта.

Причины заболеваний

Причины заболеваний сердца могут быть разными. Мы иногда можем даже не знать, что являемся носителем какой-либо патологии. Различают такие причины патологии:

  • приобретенные или врожденные пороки сердца;
  • хирургические последствия, травмы;
  • осложнения после болезней;
  • нарушение нервной системы;
  • заболевания путей дыхательной системы;
  • заболевания щитовидной железы, сахарный диабет, анемия;
  • побочные эффекты от медикаментозных препаратов;
  • алкоголь и курение;
  • блокады, возникшие без видимой причины.

У людей есть возможность решать такие проблемы медикаментозным и хирургическим способом.

Медикаментозное лечение предусматривает прием витаминов и препаратов, соблюдение диеты (увеличение порции приема свежих овощей и фруктов, отказ от слишком жирной и сладкой еды).

Хирургическое применяют, когда медикаментозное лечение не действует. К примеру, человек часто теряет сознание или заболевание переходит в злокачественную форму. В таких случаях возможна установка кардиостимулятора.

После чего такие люди должны быть под постоянным присмотром специалистов.

Профилактика заболеваний

В настоящее время каждый человек имеет какие-то проблемы со здоровьем. Это могут быть приобретенные заболевания или врожденные. К сожалению, не каждый человек сможет себе позволить регулярное лечение или оздоровительные мероприятия. Но это не означает, что нужно смириться с проблемами здоровья.

Специалисты рекомендуют соблюдать некоторые правила, которые эффективны и нужны для того, чтобы предотвратить нарушение в работе этих органов. С помощью них можно не только поддерживать уровень здоровья, снизить риск появления новых, но также облегчить форму уже имеющихся заболеваний.

К таким правилам относятся:

  • правильный режим дня;
  • рациональное питание;
  • отказ от вредных привычек;
  • избегание стрессовых ситуаций;
  • своевременное обращение к специалистам.

Выполнять такие правила не составит труда, но зато результат не заставит себя ждать. Самое главное, следить за систематичностью выполнения и научиться получать от них удовольствие.

Так мы узнали, где расположен синусно-предсердный узел, за что он отвечает, и как сохранить стабильную работу сердца долгие годы. Берегите себя, не болейте! А главное, следите за состоянием своего здоровья.

Источник: https://FB.ru/article/397836/sinusno-predserdnyiy-uzel-chto-eto-takoe-i-gde-nahoditsya

Проводящая система сердца

Где находится синусовый узел

Пройти онлайн тест (экзамен) по данной теме…

Прежде, чем знакомиться с дальнейшим материалом, рекомендуется вкратце освежить анатомические знания сердечной мышцы.

Сердце – удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые “заставляют” сердце ритмично сокращаться, выполняя функцию кровяного насоса.

  1. синусно-предсердный узел (синусовый узел);
  2. левое предсердие;
  3. предсердно-желудочковый узел (атриовентрикулярный узел);
  4. предсердно-желудочковый пучок (пучок Гиса);
  5. правая и левая ножки пучка Гиса;
  6. левый желудочек;
  7. проводящие мышечные волокна Пуркинье;
  8. межжелудочковая перегородка;
  9. правый желудочек;
  10. правый предсердно-желудочковый клапан;
  11. нижняя полая вена;
  12. правое предсердие;
  13. отверстие венечного синуса;
  14. верхняя полая вена.

Рис.1 Схема строения проводящей системы сердца

Из чего состоит проводящая система сердца?

  1. Начинается проводящая система сердца синусовым узлом (узел Киса-Флака), который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм.

    Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).
     

  2. Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм.

    По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.
     

  3. Атриовентрикулярный узел переходит в пучок Гиса, который состоит из пенетрирующего (начального) и ветвящегося сегментов.

    Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.
     

  4. Пучок Гиса разделяется на 2 ножки (правую и левую).

    Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся.

    Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь – заднюю стенку левого желудочка, и нижние отделы боковой стенки.

    1. правая ножка пучка Гиса;
    2. правый желудочек;
    3. задняя ветвь левой ножки пучка Гиса;
    4. межжелудочковая перегородка;
    5. левый желудочек;
    6. передняя ветвь левой ножки;
    7. левая ножка пучка Гиса;
    8. пучок Гиса.

    На рисунке представлен фронтальный разрез сердца (внутрижелудочковой части) с разветвлениями пучка Гиса. Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки.

    Наиболее тонкими, следовательно уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки.

    Ножки пучка Гиса и их ветви состоят из двух видов клеток – Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.

     

  5. Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.
     

Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье – импульсы проводятся к сократительному миокарду.

Рассмотрим этот процесс подробно:

  1. Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
     
  2. Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
     
  3. По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):
    • Передний путь (тракт Бахмана) – идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки – одна из которых подходит к АВУ, а другая – к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;
    • Средний путь (тракт Венкебаха) – идет по межпредсердной перегородке к АВУ;
    • Задний путь (тракт Тореля) – идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.

     

  4. Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
     
  5. Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
     
  6. АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
     
  7. Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
     
  8. Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
     
  9. Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма – 15-30 импульсов в минуту.
     
  10. В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
     
  11. В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:

  1. синусовый узел (автоматический центр первого порядка) – обладает наибольшим автоматизмом;
  2. атриовентрикулярный узел (автоматический центр второго порядка);
  3. пучок Гиса и его ножки (автоматический центр третьего порядка).

В норме существует только один водитель ритма – это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

Проводящая система сердца способна проводить импульсы не только в прямом направлении – от предсердий к желудочкам (антеградно), но и в обратном направлении – от желудочков к предсердиям (ретроградно).

Пройти онлайн тест (экзамен) по данной теме…

 

ВНИМАНИЕ! Информация, представленная сайте DIABET-GIPERTONIA.RU носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

Источник: http://diabet-gipertonia.ru/ekg/01_provodjashaja_sistema_serdsa.html

Проводящая система сердца. Синусовый узел

Где находится синусовый узел

На рисунке показана схема проводящей системы сердца.

В ее состав входят: (1) синусный узел (который также называют синоатриальным или С-А узлом), где и происходит ритмическая генерация импульсов; (2) предсердные межузловые пучки, по которым импульсы проводятся от синусного узла к агриовентрикулярному узлу; (3) атриовентрикулярный узел, в котором происходит задержка проведения импульсов от предсердий к желудочкам; (4) атриовентрикулярный пучок, по которому импульсы проводятся к желудочкам; (5) левая и правая ножки А-В пучка, состоящие из волокон Пуркинье, благодаря которым импульсы достигают сократительного миокарда.

Синусный (синоатриальный) узел представляет собой небольшую эллипсовидную пластинку шириной 3 мм, длиной 15 мм и толщиной 1 мм, состоящую из атипических кардиомноцитов. С-А узел расположен в верхней части заднебоковой стенки правого предсердия у места впадения в него верхней полой вены.

Клетки, входящие в состав С-А узла, практически не содержат сократительных филаментов; их диаметр всего лишь 3-5 мкм (в отличие от предсердных сократительных волокон, диаметр которых 10-15 мкм).

Клетки синусного узла непосредственно связаны с сократительными мышечными волокнами, поэтому потенциал действия, возникший в синусном узле, немедленно распространяется на миокард предсердий.

Автоматия — это способность некоторых сердечных волокон самостоятельно возбуждаться и вызывать ритмические сокращения сердца. Способностью к автоматии обладают клетки проводящей системы сердца, в том числе клетки синусного узла. Именно С-А узел контролирует ритм сердечных сокращений, как мы увидим далее. А сейчас обсудим механизм автоматии.

Механизм автоматии синусного узла. На рисунке представлены потенциалы действия клетки синусного узла, записанные на протяжении трех сердечных циклов, и для сравнения — одиночный потенциал действия кардиомиоцита желудочка.

Необходимо отметить, что потенциал покоя клетки синусного узла имеет меньшую величину (от -55 до -60 мВ) в отличие от типичного кардиомиоцита (от -85 до -90 мВ). Это различие объясняется тем, что мембрана узловой клетки в большей степени проницаема для ионов натрия и кальция.

Вход этих катионов в клетку нейтрализует часть внутриклеточных отрицательных зарядов и уменьшает величину потенциала покоя.

Прежде чем перейти к механизму автоматии, необходимо вспомнить, что в мембране кардиомиоцитов существуют три типа ионных каналов, которые играют важную роль в генерации потенциала действия: (1) быстрые натриевые каналы, (2) медленные Na+/Са2+-каналы, (3) калиевые каналы.

В клетках миокарда желудочков кратковременное открытие быстрых натриевых каналов (на несколько десятитысячных долей секунды) и вход ионов натрия в клетку приводит к быстрой деполяризации и перезарядке мембраны кардиомиоцита. Фаза плато потенциала действия, которая продолжается 0,3 сек, формируется за счет открытия медленных Na+/Ca -каналов.

Затем открываются калиевые каналы, происходит диффузия ионов калия из клетки — и мембранный потенциал возвращается к исходному уровню.

В клетках синусного узла потенциал покоя меньше, чем в клетках сократительного миокарда (-55 мВ вместо -90 мВ). В этих условиях ионные каналы функционируют по-другому. Быстрые натриевые каналы инактивированы и не могут участвовать в генерации импульса.

Дело в том, что любое уменьшение мембранного потенциала до -55 мВ на срок больший, чем несколько миллисекунд, приводит к закрытию инактивационных ворот во внутренней части быстрых натриевых каналов. Большая часть этих каналов оказывается полностью блокирована.

В этих условиях могут открыться только медленные Na+/Ca -каналы, и поэтому именно их активация становится причиной возникновения потенциала действия.

Кроме того, активация медленных Na/Ca -каналов обусловливает сравнительно медленное развитие процессов деполяризации и реполяризации в клетках синусного узла в отличие от волокон сократительного миокарда желудочков.

– Также рекомендуем “Самовозбуждение клеток синусного узла. Межузловые пучки сердца”

Оглавление темы “Проводящая система сердца. ЭКГ”:
1. Проводящая система сердца. Синусовый узел
2. Самовозбуждение клеток синусного узла. Межузловые пучки сердца
3. Физиология атриовентрикулярного узла. Проведение в волокнах Пуркинье
4. Распространение сердечного сокращения. Водитель ритма сердца
5. Эктопические водители ритма. Физиология системы Пуркинье и парасимпатической регуляции сердца
6. Влияние блуждающего нерва на сердце. Симпатическая регуляция сердца
7. Нормальная электрокардиограмма. ЭКГ – механизмы формирования
8. Зубцы электрокардиограммы. ЭКГ во взаимосвязи с сокращениями сердца
9. Распространение электрического тока вокруг сердца. Регистрация ЭКГ вокруг сердца
10. Электрокардиографические отведения. Треугольник и закон Эйнтховена

Источник: https://meduniver.com/Medical/Physiology/547.html

Терапевт Шубин
Добавить комментарий